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Abstract: We find the general five-dimensional, supersymmetric black ring solutions in

M -theory based upon a circular ring, but with arbitrary, fluctuating charge distributions

around the ring. The solutions have three arbitrary charge distribution functions, but

their asymptotic charges and angular momenta only depend upon the total charges on

the ring. The arbitrary density fluctuations thus represent “hair.” By varying the charge

distributions one can continuously change the entropy of these black rings; to our knowledge

this is the first solution in which the entropy depends on classical moduli. We also show

that there is a family of solutions, with two arbitrary functions, for which the horizon

remains rotationally invariant, and yet the complete solution breaks rotational symmetry.

If the horizon area is set to zero then one obtains families of supertube solutions. We find

that our general solutions are governed by three harmonic functions that may be thought

of as classical excitations of a string. The horizon area provides a natural Lorentz metric

on these excitations, and the constancy of the rotational invariance of the horizon imposes

a set of Virasoro constraints.
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1. Introduction

There are quite a number of reasons to study and classify three-charge, BPS black ring and

supertube solutions. For relativists it is interesting to understand the large variety of such

solutions [1 – 6] and the large extent to which they violate black hole uniqueness. Another

major driving force is the recent proposal by Mathur and collaborators that supertubes can

be thought of as individual black-hole microstates and that black holes should be thought

of as “statistical ensembles” of regular horizon-less microstate geometries [7 – 15].

Although string theory indicates the existence of large families of three-charge BPS

solutions [16], finding these solutions has proven to be quite hard given the complex-

ity of the underlying equations. The explicitly-known, three-charge BPS solutions are:

the BMPV black hole [17, 18], supersymmetric three-charge supertubes, black rings with

horizon topology S1 × S2 in minimal supergravity [2], or eleven-dimensional supergrav-

ity [3, 4, 6, 1], superpositions of black rings [5, 6], as well as solutions obtained by other

methods [11, 19, 12 – 15]. All the explicit solution are U(1) × U(1) invariant.1 However, if

one is to use these solutions to explain black hole entropy [12] or to find the extent of the

violation of black hole uniqueness, it is important to find three-charge BPS supertubes,

black rings and other solutions that do not have such a large symmetry.

By analyzing the Killing spinors of three-charge solutions using the Killing spinor

methods developed in [20, 21], it was shown in [3] that the general problem of finding

three-charge solutions that preserve the same supersymmetries as the three-charge black

1Some implicit solutions with only one U(1) invariance have also been constructed [5, 6].
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hole can be reduced to solving linear equations of ordinary, Euclidean, four-dimensional

electromagnetism. While these equations appear, at first sight, to be non-linear,2 it was

also pointed out in [3] that if these equations are solved in the proper sequence, then the

non-linearities only appear in source terms, meaning that the problem is actually linear.

To find solutions with a flat base, one first choses an arbitrary profile shape, ~µ(ψ) ∈ R
4,

0 ≤ ψ ≤ 2π, for the ring, which determines the fluxes sourced by the dipole branes. One

then is free to choose three arbitrary charge density functions, ρi(ψ), around the ring, and

determine the harmonic functions sourced by these charges, which are then used to find the

angular momentum and complete the solution. There are thus seven arbitrary functions

in the general solution of [3]. While this general solution with seven arbitrary functions is

not explicitly exhibited in [3], its existence is guaranteed by the existence of solutions in

Euclidean electromagnetism for a given source distribution.

Even though a solution to the equations of electromagnetism may exist, the corre-

sponding solution in M -theory is required to satisfy some more stringent physical con-

ditions: Most particularly, there should be no closed time-like curves (CTCs). In [3] it

was argued that any supertube solution, when approached sufficiently closely, should look

like the straight supertube of [1], and hence be regular, and free of CTC’s. However, this

observation really only guarantees that there are not “local” CTC’s around the ring, and

also does not guarantee the absence of Dirac strings. It is therefore important to construct

these solutions and examine their features explicitly.

In this paper we construct new, asymptotically flat, black ring solutions given by three

of the seven arbitrary functions that govern general solutions with a flat base. The black

rings and three-charge supertubes have circular dipole profiles, but have arbitrary charge

densities. We will see that the charge densities feed back into the geometrical shape of the

ring, causing its physical radius of curvature to vary. We also verify that the solutions have

no Dirac strings and no CTC’s near the ring. Although we have not analyzed whether the

metric at the horizon is smooth, there is a family of our solutions, parametrized by two

arbitrary functions, that has the same near-horizon geometry as the U(1)×U(1) invariant

black ring, and intuitively one should expect it to be completely smooth at the horizon.3

Our solutions describe families of black ring solutions that have three, freely choosable

charge densities around the ring, but whose asymptotic charges are the same as those of

the U(1) × U(1) black ring with the same total charges. The entropy of these rings will

turn out to be the integral of a certain functional of these functions, and can thus be freely

varied by changing the charge densities. This freedom persists in the two parameter family

that is U(1) × U(1) invariant near the horizon. Hence, our solutions are the first example

of a black hole whose entropy depends on continuous parameters — the charge densities

along the ring.

To find the supertube solutions one wants to set the horizon area to zero, but we

consider the more general problem of setting the horizon area equal to a constant. This is

interesting because it results in families of solutions that break the U(1) symmetry around

2These equations were also found in work that classifies five-dimensional supergravity solutions [22, 23].
3The continuity issues at the horizon are rather subtle, and are being investigated by Horowitz and

Reall [24].
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the ring axis, but that have “round” horizons, that is, the horizon does have rotational

invariance along the ring. Setting the horizon area to a constant imposes one functional

condition, and we have three arbitrary functions in the charge densities, and so there are

generally going to be families of solutions with constant horizons parametrized by two

arbitrary functions.

We also find a rather simpler, and physically very interesting way to characterize our

solutions. By changing coordinates, one may think of our solutions as being governed

by three harmonic functions on a semi-infinite cylinder. The charge densities source the

functions at the bottom of the cylinder, and the solutions are required to vanish at infinity.

One may thus think of the solutions as some form of bosonic string excitations theory. The

horizon radius of curvature provides a simple Lorentz metric on this bosonic string, and

requiring that the radius of curvature be constant (a “round” horizon) amounts to imposing

a set of Virasoro constraints. While these statements are classical, it does suggest that the

charge excitations of the black ring might be quantized in terms of such a bosonic string.

We will defer a more detailed investigation of these issues to a subsequent paper.

In the next section we will summarize the results of [3] concerning the system of

equations that govern supertubes and black rings. In section 3 we present the solutions

with varying charge densities, while section 4 discusses the solutions with round horizons,

and contains a simple example. In section 5 we recast our results in terms of a classical

bosonic string, and we make some final comments in section 6.

Note: After this paper was submitted to the archive, [24] appeared, in which it was

claimed that black-ring solutions of minimal five-dimensional supergravity with variable

charge density are not smooth. We are in the process of investigating these claims.

2. The black-ring equations

The simplest way to describe the three-charge black ring is in terms of three sets of M2

branes. We take the M2 branes to lie in the 123, 145 and 167 directions, so that they

wrap tori in the spatial directions. The non-compact space-time is thus in the 1 8 9 10 11

directions. The metric Ansatz is:

e1 = e−2A1−2A2−2A3( dx1 + ~k · d~y ),

e2 = e−2A1+A2+A3dx2 , e3 = e−2A1+A2+A3dx3 ,

e4 = eA1−2A2+A3dx4 , e5 = eA1−2A2+A3dx5 ,

e6 = eA1+A2−2A3dx6 , e7 = eA1+A2−2A3dx7 ,

e7+j = eA1+A2+A3dyj , j = 1, . . . , 4 . (2.1)

The solution contains both M2 branes and M5 branes. The M5-branes wrap four-tori in

the 4567, 2367 and 2345 directions respectively, and their last spatial dimension will define

the ring profile,4 ~y = ~µ(ψ) ∈ R
4, 0 ≤ ψ ≤ 2π. The electric charges of the M2 branes are

4As was pointed out in [3], the three M5 branes could have separate profiles, but we will not consider

this possibility here since such independent profiles are almost certainly not bound states.
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completely fixed in terms of the metric functions via the usual “zero-force” BPS conditions.

However, the presence of the M5 branes is reflected in three independent Maxwell fields,

~a(i), in the R
4:

C(3) = −e1 ∧ e2 ∧ e3 − e1 ∧ e4 ∧ e5 − e1 ∧ e6 ∧ e7 + (2.2)

+2 (~a(1) · d~y) ∧ dx2 ∧ dx3 + 2 (~a(2) · d~y) ∧ dx4 ∧ dx5 + 2 (~a(3) · d~y) ∧ dx6 ∧ dx7 .

It is convenient to introduce the functions, Zj , and the Maxwell field strengths G(j),

defined by:

Zj ≡ e6Aj , G(j) ≡ d(a(j)) , j = 1, 2, 3 . (2.3)

The equations that define the 1
8 -BPS rings are then:

G(i) = ∗G(i) , (2.4)

d ∗ dZi = 2
∑

j,k

|εijk|G(j) ∧ G(k) , (2.5)

dk + ∗dk = 2G(1)Z1 + 2G(2)Z2 + 2G(3)Z3 , (2.6)

where ∗ denotes the dual on R
4 and k is the angular momentum vector appearing in e1

in (2.1). If one solves this system in the order presented here, then the system is linear.

The general solution for a ring profile ~y = ~µ(ψ) can then be written in terms of the

usual Green functions, as follows. First one computes:

~b(j)(~y) ≡
qj

2π

∫ 2π

0

~µj
′(ψ)

|~y − ~µj(ψ)|2
dψ , (2.7)

and then sets:

G(j) = (1 + ∗) (d (~b(j) · d~y) ) . (2.8)

One then uses this to obtain ~a(j). Note that the charge density in the integrand of (2.7)

is constant, reflecting the fact that the number of M5 branes is constant along the profile.

Having solved for G(j), one then gets the Zi from:

Zi(~y) = 1 +

∫
ρi(~z) + 2

∑
j,k |εijk| ∗ (Gj ∧ Gk)(~z)

(~y − ~z)2
d4z , (2.9)

where the constant of integration has been set to one so that the metric has the proper

asymptotics at infinity. The functions, ρi(~z), are freely choosable, but for a black ring

or three-charge supertube we require the density functions to be supported on the ring.

Finally, one gets the angular momentum vector, ~k, from solving:

∗d ∗ dk = ∗ 2 [(dZ1) ∧ G1 + (dZ2) ∧ G2 + (dZ3) ∧ G3] ≡ J , (2.10)

via the Green function:

~k(~y) ≡

∫

R4

~J(~z)

|~y − ~z|2
d4z . (2.11)

In principle one can add a homogeneous component to the solution, (2.11), that is, a

vector field, ~k0, for which dk0 + ∗dk0 = 0 outside the ring. Such a solution would be

sourced by an “angular momentum density,” σ(ψ), around the ring. As was noted in [3],

this homogeneous solution, and the associated density, σ(ψ), must usually be set to zero

in order to avoid CTC’s.
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3. The solutions with varying charge densities

We now seek ring solutions with varying charge densities. We will start with a “round”

M5-brane distribution, exactly as in [3], but we will the introduce general distributions of

M2-brane charge around the ring. We consider a ring of M5 branes located at r = 0 and

z = R, in the coordinates (z, ψ) and (r, φ) in which the metric on R
4 is

d~y · d~y = (dz2 + z2 dψ2) + (dr2 + r2 dφ2) . (3.1)

To solve the Laplace equation and to simplify the form of the Gi it is simpler to use a

better-adapted set of coordinates [2]:

x = −
z2 + r2 − R2

√
((z − R)2 + r2)((z + R)2 + r2)

, y = −
z2 + r2 + R2

√
((z − R)2 + r2)((z + R)2 + r2)

,

(3.2)

for which one has −1 ≤ x ≤ 1, −∞ < y ≤ −1, and the ring is located at y = −∞. In these

coordinates, the metric on R
4 becomes:

ds2
R4 =

R2

(x − y)2

(
dy2

y2 − 1
+ (y2 − 1) dψ2 +

dx2

1 − x2
+ (1 − x2) dφ2

)
. (3.3)

3.1 The new solutions

Since the shapes of the dipole branes are the same as in references [3, 4, 6], the fields ~a(j)

are the same, and hence:

G(j) = qj (dx ∧ dφ − dy ∧ dψ) . (3.4)

The new element in the solution here is to allow a general charge density around the ring.

This means that Zi contains a term of the form:

λi(z, r, ψ) =

∫ 2 π

0

ρi(χ)R

r2 + z2 + R2 − 2 z R cos(ψ − χ)
dχ . (3.5)

where ρi(χ) is the linear charge density on the ring in the flat R
4 metric. If one expands

ρi(ψ) into a Fourier series:

ρi(ψ) = ai
0 +

∞∑

n=1

( ai
n cos(n ψ) + bi

n sin(n ψ) ) , (3.6)

then the integrals in (3.5) become elementary contour integrals and one finds

λi(z, r, ψ) =
π

R
(x − y)Si(y, ψ) , (3.7)

where y is the coordinate defined in (3.2), and

Si(y, ψ) ≡ ai
0 +

∞∑

n=1

(y + 1

y − 1

)n/2
( ai

n cos(n ψ) + bi
n sin(n ψ) ) , (3.8)

Note that as y → −∞, Si(y, ψ) → ρi(ψ). That is, as one approaches the ring, the function

Si limits to the charge density.
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Thus we take:

Zi = 1 +
π

R
(x − y)Si(y, ψ) −

4qj qk

R2
(x2 − y2) , (3.9)

where i, j, k are all distinct, and the term proportional to qj qk is a consequence of the

source term in (2.9).

One of the very useful properties of the coordinates (x, y, ψ, φ) is that the Laplacian

is separable. More precisely, one can separate variables in the function F (x, y, ψ, φ) if one

acts on (x − y)F with the Laplacian:

R2

(x − y)3
∇2[ (x − y)F ] = ∂x((1 − x2) ∂x F ) + ∂y((y

2 − 1) ∂y F ) +

+(y2 − 1)−1 ∂2
ψ F + (1 − x2)−1 ∂2

φ F . (3.10)

Thus it is relatively easily to find general solutions for the Zi in terms of orthogonal

eigenfunctions. In particular, it is elementary to show directly from (2.9) that Si must

satisfy:

(y2 − 1) ∂y((y
2 − 1) ∂y S) + ∂2

ψ S = 0 , (3.11)

away from the ring.

It is now convenient to separate out the constant modes and normalize them to the

conventions of [3], and so we set ai
0 = Qi

π . It is also useful to introduce the functions:

Ωi(y, ψ) ≡

∞∑

n=1

(y + 1

y − 1

)n/2 1

n
( ai

n sin(n ψ) − bi
n cos(n ψ) ) . (3.12)

These functions are the indefinite integrals with respect to ψ of the oscillatory part of Si.

They also satisfy the differential equation (3.11). One therefore has:

Zi = 1 +
Qi

R
(x − y) −

4qj qk

R2
(x2 − y2) +

π

R
(x − y) ∂ψΩi(y, ψ) . (3.13)

Following [3] we also define:

A ≡ 2(q1 + q2 + q3) , B ≡
2

R
(Q1 q1 + Q2 q2 + Q3 q3) , C ≡ −

24q1 q2 q3

R2
. (3.14)

The final step is to solve (2.6). To this end we make an Ansatz:

k = k0 dy + k1 dψ + k2 dφ . (3.15)

One should note that there is a gauge freedom in the definition of k since a change of

coordinate t → t + g generates a gauge transformation k → k + dg. The absence of a dx

term in (3.15) may be viewed as a gauge choice. One then obtains the system of differential

equations:

∂yk1 − ∂ψk0 − ∂xk2 = −

[
A + B (x − y) + C (x2 − y2) +

2π

R
(x − y) ∂ψΩ(y, ψ)

]
,

(1 − x2)(y2 − 1) ∂xk0 − ∂ψk2 − ∂φk1 = 0 ,

(y2 − 1) (∂yk2 − ∂φk0) + (1 − x2) ∂xk1 = 0 , (3.16)
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where

Ω ≡
∑

i

qi Ωi . (3.17)

It is easy to see that a solution to this system is given by:

k0 = −
π

R
[x (y2 − 1)−1 ∂2

ψΩ + 2 y Ω ] ,

k1 = (y2 − 1)

(
1

3
C (x + y) +

1

2
B

)
− A (y + 1) +

π

R
x (y2 − 1) ∂ψ∂yΩ ,

k2 = (x2 − 1)

(
1

3
C (x + y) +

1

2
B

)
−

π

R
(1 − x2) ∂ψΩ . (3.18)

To show that this solves (3.16) one merely needs to use the fact that Ω satisfies (3.11). If

Ω = 0 then this is simply the solution of [3, 4, 6].

In principle one can add an arbitrary homogeneous solution of (3.16) to (3.18). How-

ever, this homogeneous solution is then fixed by requiring that there are no CTC’s near

the ring. This was used in [3] to fix the polynomial behavior of the kj as functions of y.

The ring is located at y = −∞, and one can readily verify that Ω, ∂m
ψ Ω and (y2−1) ∂ψ∂yΩ

are all finite as y → −∞, and so it is unlikely that these new terms will generate any

new CTC’s near the ring, and so no further additions of homogeneous solutions should be

necessary. We will see this more explicitly below.

It turns out that there is a more convenient gauge choice for k, one in which the

y-component of k is zero:

k = k̂0 dx + k̂1 dψ + k̂2 dφ . (3.19)

This may be achieved by taking k → k + dg. where

g = −
π

R
x (y2 − 1) ∂yΩ +

2π

R

∫
y Ω dy . (3.20)

One then finds:

k̂0 = −
π

R
(y2 − 1) ∂yΩ ,

k̂1 = (y2 − 1)

(
1

3
C (x + y) +

1

2
B

)
− A (y + 1) +

2π

R

∫
y ∂ψΩ dy ,

k̂2 = (x2 − 1)

(
1

3
C (x + y) +

1

2
B

)
−

π

R
(1 − x2) ∂ψΩ . (3.21)

We also need to fix the function of ψ that appears as a “constant of integration” from∫
yΩdy in (3.20). This is elementary: One must not have any strings, and so this indefinite

integral must vanish at spatial infinity, or as y → −1. It then follows from (3.12) that this

indefinite integral has a leading behavior:
∫

y Ω dy ∼ (y + 1)3/2 as y → −1 . (3.22)

Indeed, to verify that there are no strings within our solution one must check that k̂1

vanishes as z → 0, or y → −1, and k̂2 vanishes as r → 0, or x → −1. This is evident

from (3.21) and (3.22).

We now have the complete solution with arbitrary charge densities.

– 7 –
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3.2 The near-ring limit

To examine how the metric behaves near the ring we want to take the limit as y → −∞.

This structure of the metric is simpler to disentangle if we use the rotation vector (3.21),

instead of (3.18). Observe that the gauge transformation (3.20) has added to k a term that

diverges as y → −∞. Indeed, the leading divergence is simply:

π

R
y2

[
lim

y→−∞
∂ψΩ(y, ψ)

]
∼

π

R
y2

∑

i

qiρ̂i(ψ) . (3.23)

where

ρ̂i(ψ) ≡ ρi(ψ) − ai
0 (3.24)

is the oscillatory part of the charge density. Recall that the linear charge densities on the

ring are 1
π Q̂i(ψ), where

Q̂i(ψ) ≡ Qi + π ρ̂i(ψ) . (3.25)

Therefore by making the replacement

Qi → Q̂i(ψ) , (3.26)

we can incorporate the leading divergence, (3.23), in k into the coefficient B defined

in (3.14), and thus reduce the problem almost to that of [3].

We now consider the three-dimensional spatial part of the metric:

ds2
3 = −(Z1 Z2 Z3)

−2/3 k2

+
R2

(x − y)2
(Z1 Z2 Z3)

1/3

(
(y2 − 1) dψ2 +

dx2

1 − x2
+ (1 − x2) dφ2

)
(3.27)

as we approach the ring. Since Zi ∼ y2 and k ∼ y3 as y → −∞ this metric potentially

diverges as y2. However one finds that the terms that are quadratic and linear in y exactly

cancel, leaving a finite part:

ds2
3 =

( C2

9R2

)1/3
[(

9

C2

)
M̂(ψ) dψ2 + R2

(
dθ2 + sin2 θ (dφ + dψ)2

) ]
, (3.28)

where we have set x = − cos θ. The function, M̂(ψ), is almost the obvious generalization

of the parameter M in [3]:

M̂ ≡ (2q1q2Q̂1Q̂2 +2q1q3Q̂1Q̂3 +2q2q3Q̂2Q̂3 − q2
1Q̂

2
1 − q2

2Q̂
2
2 − q2

3Q̂
2
3)+

1

3
C R2(A− 2α(ψ)) ,

(3.29)

where Q̂i is defined by (3.25), and α(ψ) is defined via:

∂ψΩ =

(
∑

i

qiρ̂i(ψ)

)
+

R

π
α(ψ) y−1 + O(y−2) as y → −∞ . (3.30)

In terms of the Fourier series we have

α(ψ) =
3∑

i=1

qi αi(ψ) =
π

R

3∑

i=1

qi

∞∑

n=1

n ( ai
n cos(n ψ) + bi

n sin(n ψ) ) . (3.31)

– 8 –
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Figure 1: The horizon of the black ring. The cross-section is really an S2 of fixed radius, R, but

is depicted here as an S1. The variation of gψψ along the ψ-direction in the horizon metric (3.28)

is depicted as a change of color.

We therefore see that, with the exception of the α(ψ) term, the form of the near-

ring metric is exactly that of [3], but with the replacement (3.26). This makes perfect

physical sense: The functions Q̂i(ψ) are the local charge densities on the ring, and so if one

approaches the ring closely then the ring should look like the infinitely long black tube [1]

with charge density given by the local values.

The only unexpected modification is the appearance of the α(ψ) term as a shift in

A ≡ 2(q1 + q2 + q3). The sum of the qj is essentially the angular momentum of the black

ring, and so α(ψ) appears to be a local shift in the angular momentum. As we will see

below, none of the fluctuations like α(ψ) are visible from infinity. Thus, this shift must

be related to the angular momentum balance of the ring locally on the ring surface. One

should also note that while the ring is a perfect circle in the original R
4 base, it is no longer

circular in the complete metric. From (3.28) one can see that its radius of curvature is

varying:

µ(ψ) =
∣∣∣
3

C

∣∣∣
√

M̂(ψ) . (3.32)

Therefore one should expect some fluctuation in the angular momentum contribution to

the horizon area.

3.3 Asymptotic charges

The region far from the ring corresponds to x = −1, y = −1. Indeed, in this limit:

x ∼ −1 +
2R2 r2

(z2 + r2)2
, y ∼ −1 −

2R2 z2

(z2 + r2)2
. (3.33)

Therefore, the asymptotic charges of the solution come from the terms in the electric

potentials that fall-off as (y + 1). However, the (x − y)∂ψΩ terms in (3.13) fall-off faster

than that, and therefore the electric charge measured at infinity is exactly that of the
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U(1) × U(1) invariant ring [3, 4, 6]:

Q∞
i ≡ Qi + 4

∑

j,k

|εijk| qj qk (3.34)

One can convert these charges to number densities of branes using:

Qi =
N̄il

6
p

2L4R
, qi =

nil
3
p

4L2
, (3.35)

where L is the length of the two-tori. The asymptotic charges, Ni, of the solution are then

the sum of the charges on the black ring N̄i, and the charges dissolved in fluxes:

N1 = N̄1 + n2n3 , N2 = N̄2 + n1n3 , N3 = N̄3 + n1n2 . (3.36)

The angular momenta also behave in exactly the same way: They can be read off from

the dt dψ and dt dφ terms in the metric that vanish as (1 + x)a(y + 1)(1−a), for some a,

or inversely as the square of the distance. From (3.21) and (3.22) one sees that the terms

involving Ω do not contribute; hence the angular momenta are also the same as for the

uniformly charged ring:

J1 = JT +
1

2

( 3∑

i=1

niNi − n1n2n3

)
, J2 = −

1

2

( 3∑

i=1

niNi − n1n2n3

)
, (3.37)

where JT is the angular momentum carried by the ring:

JT =
R2L4

l6p
(n1 + n2 + n3) . (3.38)

Thus the varying charge densities are undetectable in the asymptotic charges, and so

the fluctuating charge densities, ρ̂i(ψ), truly represent an infinite amount of “hair” on the

black ring.

4. Some properties of the solutions

We have exhibited a family of solutions with three arbitrary fluctuating charge densities,

ρ̂i(ψ), and the asymptotic charges of the solution are completely independent of these

fluctuating densities. On the other hand, the horizon geometry, and its area, do depend

non-trivially upon these functions. In particular, the function M̂(ψ) is a quadratic func-

tional of these densities. Indeed, the Q̂i (which appear quadratically in (3.29)) are linear

functions of the ρ̂i, and the function α(ψ) is also a linear functional of ρ̂i(ψ), as can be

seen from (3.31).

Supertubes are, of course, obtained by setting M̂(ψ) identically equal to zero. Since this

involves one functional constraint on three arbitrary functions, our solutions will contain

a family of supertubes parametrized by two independent functions. Before examining this

more closely, it is interesting to broaden the issue a little, and discuss families of solutions for

which M̂(ψ) is actually a constant, and not necessarily zero. These solutions are physically
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very interesting because, even though the complete solution is ψ-dependent and breaks ψ-

translation symmetry, the horizon does have ψ-translation symmetry if M̂(ψ) is constant.

Thus the geometry near the horizon is identical to that of the round ring, and the solutions

provide a very graphic example of black hole hair, as they have two functions-worth of hair

that lives on a completely round ring.

As an example, consider charge density modes that only have a finite number of Fourier

terms - that is, the series (3.6) ends at n = K. Then one can simply substitute (3.6)

and (3.31) into M̂(ψ). The result is then a Fourier series in sin(nψ) and cos(nψ) for n ≤ 2K.

Setting all but the constant term to zero will impose 4K constraints on the 6K variables

ai
n, bi

n, n = 1, . . . ,K, i = 1, 2, 3. Thus we get 2K free parameters in general. One should

also note that in simplifying M̂(ψ), one will use the identities cos2(nψ) = 1
2 (1+cos(2nψ)),

sin2(nψ) = 1
2 (1− cos(2nψ)), and this will shift the constant terms in M̂(ψ) by 1

2(ai
n)2 and

1
2 (bi

n)2. Thus the fluctuating modes will contribute to the horizon area.

It is elementary to implement the foregoing analysis for a single Fourier mode. Take

ai
n = R

π ci and bi
n = R

π di for some n, and set all the other modes to zero. Then

Q̂i = Qi + R (ci cos(nψ) + di sin(nψ)) . (4.1)

and

α(ψ) =

3∑

i=1

qi n (ci cos(nψ) + di sin(nψ)) . (4.2)

Let ~c and ~d be the vectors whose components are ci and di, and define:

~Q = (Q1 , Q2 , Q3) , ~q = (q1 , q2 , q3) , ~qc =
1

R
(q2q3 , q1q3 , q1q2) . (4.3)

Introduce the matrix:

M ≡




−q2

1 q1 q2 q1 q3

q1 q2 −q2
2 q2 q3

q1 q3 q2 q3 −q2
3



 , (4.4)

then the condition that M̂(ψ) is independent of ψ yields the equations:

(~Q + 8n ~qc)
T · M · ~c = 0 , ( ~Q + 8n ~qc)

T · M · ~d = 0 ,

(~c)T · M · ~d = 0 , (~c)T ·M · ~c = (~d)T · M · ~d . (4.5)

One also finds that the value of M̂ is shifted from its value when ρ̂i = 0 by an amount:

∆M̂ =
1

2
R2

[
(~c)T ·M · ~c + (~d)T ·M · ~d

]
. (4.6)

Therefore, in the (indefinite) metric defined by M, the vectors ( ~Q + 8n ~qc), ~c and ~d must

all be mutually orthogonal, and ~c and ~d must have the same norm. There are thus two

parameters: The norm of ~c and the freedom to make a rotation in the (~c, ~d) plane. The

shift in the horizon parameter M̂ is proportional to the norm-squared of ~c.

If one has Qi = Q and qi = q, i = 1, 2, 3, then, in the standard inner product in R
3

the vectors ~c, ~d and (1, 1, 1) must be mutually orthogonal, with ~c · ~c = ~d · ~d, and then

M̂ = 3 q2 (Q2 − 16 q2) − q2 R2 [~c · ~c + ~d · ~d
]
. (4.7)
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5. A conformal field theory on the ring?

The calculation outlined in the last section actually amounts to solving the classical Vira-

soro constraints for two-dimensional scalar fields whose target space is a (2+1)-dimensional,

Lorentzian space. This suggests that one might understand the “hair” defined by the

charged modes in terms of a conformal field theory.

Introduce three scalar fields:

Xj(w, w̄) =
1

2
α

j
0 log(w w̄) +

∑

n 6=0

1

n
[ αj

n wn + α̃j
n w̄n ] , (5.1)

where, for the moment, the sum over n runs from −∞ to ∞. Let w = e−τ+iψ, and observe

that the Xj(w, w̄) satisfy the harmonic equation:

(∂2
τ + ∂2

ψ)Xj = 0 . (5.2)

To relate this to the results of the previous section, note that if one makes the change of

variable:

y = −
cosh τ

sinh τ
, (5.3)

then equation (3.11) becomes exactly the harmonic equation (5.2). We now rescale the

functions Sj of the previous section, and set:

π qj Sj = ∂τ Xj , (5.4)

with no sum on j. In making this identification we must set α
j
n = α̃

j
n = 0 for n < 0 and

impose the reality condition α̃
j
n = (αj

n)∗. Setting the negative modes to zero is required

in order to make the solution regular at τ = ∞, or y = −1, and in particular, this means

that the solution is regular at spatial infinity in the original metric (3.1).

Introduce the matrix:

P ≡




1 −1 −1

−1 1 −1

−1 −1 1



 , (5.5)

and define:

T ≡ −(∂τ
~X)T · P · (∂τ

~X) −
16 q1 q2 q3

R

( 3∑

j=1

(∂2
τ Xj)

)
− 16 q1 q2 q3 (q1 + q2 + q3) . (5.6)

Then one can easily check that:

M̂ (ψ) = lim
τ→0

T . (5.7)

Observe that P has eigenvalues −1,+1,+1 and so defines a Lorentzian metric on R
3.

Moreover, T represents the kinetic part of an (indefinite) Hamiltonian for a scalar field

theory with a “charge at infinity.” That is, T contains a kinetic term for the scalar fields,

but does not contain the “elastic terms,” (∂σXj)2. However, if one only considers solutions
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with a round horizon, and hence constant M̂(ψ), then in terms of T , this condition amounts

to the Virasoro constraints:

Ln ≡
1

2π

∫ 2 π

0
einψ T (τ, ψ)|τ=0 dψ = 0 , n > 0 . (5.8)

This Virasoro condition reduces the degrees of freedom by one bosonic function. Note

that if this were a string theory, then T would contain energy terms of the form, (∂σXj)2,

and the theory would possess conformal/reparametrization invariance. The latter would

reduce the degrees of freedom by one additional function, leaving only one transverse set

of string modes.5 Here we do not appear to have this additional harmonic reparametriza-

tion invariance, τ → τ̃(τ, ψ) and ψ → ψ̃(τ, ψ), because the other physical fields, like the

metric (3.3), are not invariant under such reparametrizations. Thus, one should probably

think of this as free bosons on a space with indefinite signature, and there are still two

freely choosable arbitrary functions in the solution after one solves (5.8).

For M̂(ψ) = 0, the free bosons described above will encode a lot of zero entropy

configurations that one might use to explain part of the entropy of black holes and black

rings. One of the main problems with counting three-charge supergravity configurations

is quantizing them. If one can reinterpret the foregoing classical free bosons in terms of

a conformal field theory then this may well provide a natural way to quantize geometries,

similar to that in [25].

6. Final comments

We have constructed a huge family of supersymmetric black ring solutions with arbitrarily

varying charge densities around the ring. These solutions do not appear to have any CTC’s,

and indeed bear out the intuition that if one approaches the ring closely then it will look

like an infinite black cylinder whose charge density is set by its local value. In particular,

we found that the near-ring metric could essentially be obtained from that of [3, 4, 6] by

replacing the constant charge densities by the varying density functions, Q̂i(ψ). The only

correction to this prescription involves an angularly dependent shift in the contribution to

the horizon area coming from the angular momentum of the ring. While the ring has a

lot of structure coming from the fluctuating charge densities, ρ̂i(ψ), none of this structure

contributes to the asymptotic charges. The charges of our new black rings are exactly those

of the U(1)×U(1) invariant black ring, and so the functions ρ̂i(ψ) do indeed represent non-

trivial “hair.”

Even if the shape of the dipole branes forming the ring is round in the flat R
4 base,

the varying charge densities feed back into the metric, so that the radius of curvature of

the ring fluctuates. Indeed, the ring radius, µ(ψ) ∼

√
M̂(ψ), is quadratic in the fluctu-

ating densities, Q̂i(ψ). Thus a fluctuation in Q̂i(ψ) that has n nodes could give rise to a

fluctuation in the ring radius that has 2n nodes (depending upon whether the quadratic

on linear terms dominate). By tuning only one parameter we can obtain solutions that in-

terpolate between black ring and supertube as one goes along the ring. While our analysis

5This is typically used in light-cone gauge to set X+
∼ p+ τ .
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does not detect any obvious problem with such solutions (apart from the well-known null

orbifold), one might reasonably expect a more detailed analysis of the geometry to reveal

some singular behavior near the transition points.

Probably the most physically relevant subset of our solutions has constant M̂(ψ),

and is parametrized by two arbitrary functions. If M̂ = 0 these solutions are three-charge

supertubes. If M̂ > 0 then these solutions describe black rings whose near-horizon geometry

is the same as that of the U(1) × U(1) invariant ring, which means that at least the rings

with constant M̂ should have regular horizon structure. We have also found that these

solutions can be described by a set of three free bosons satisfying a Virasoro constraint and

with a target space of signature (2,1).

Solutions with constant M̂ are also a good starting point for constructing non-BPS

three-charge black rings (generalizing the rings found in [26 – 29]). A variable M̂ non-

extremal ring would almost certainly be time dependent: The rotating lumps would radiate

energy away as gravitational waves, and the solution would evolve to a rotating ring in

which he horizon was “round.” By the same token, one might also wonder if non-BPS

solutions with varying charge densities, but constant horizon radius, would be unstable

through electromagnetic radiation, and thus decay into states with uniform charge densities.

This would be very interesting to pursue further.

In [3] it was shown that the most general black-ring solution is given by seven arbitrary

functions: the four independent profile functions, ~y(ψ), and the three charge densities. It

would be very interesting to find this general solution explicitly, and to see if the configu-

ration with a round horizon is similarly described by free bosons with a seven-dimensional

target space. Understanding this sigma model might be the key to quantizing the shape and

density profiles that give three-charge geometries. The entropy of our rings is an integral

of a functional of the charge densities and can be freely varied by changing these densities.

This freedom persists in the two parameter family of solutions that are U(1)×U(1) invari-

ant near the horizon. Even if the densities and the corresponding entropy are classically

continuous, at a quantum level one expects this continuity to be lost, as happens for the

two charge supertube [30], where the discrete spacing between different shapes and density

profiles accounts for the entropy of the tubes [31 – 33]. Quantizing the space of super-

tubes in terms of a CFT might open the door to computing the entropy in three-charge

supertubes, and finding if this matches the black ring or black hole entropy.

Last, but not least, the U(1) × U(1) invariant rings have a very simple description in

terms of the D1-D5 CFT [34]. It would be nice to extend this description to the new black

ring solutions we have constructed here, and to match their entropy to that of a sector of

the D1-D5 CFT.
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